Skip to main content

Posts

Penurunan Rumus Gerak Parabola

Susah mengingat rumus gerak parabola? Mari kita turunkan saja dari pers. GLBB dan GLB.. Mudah lho! Kita akan mencari waktu puncak, waktu di udara, jarak horizontal dan ketinggian maksimum dari bola yang dilempar.. (misalkan benda yang dilempar adalah bola) Kita tahu bahwa ketinggian maksimum atau puncak dicapai ketika bola tidak punya kecepatan ke atas lagi (intinya bolanya gak bisa naik lagi hahaha) Saat di puncak, maka kecepatan vertikalnya adalah nol $$v_{ty} = v_{0y} - g t_p$$ $$ 0 = v_{0y} - g t_p$$ $$ t_p = \frac{v_0 \sin \alpha}{g}$$ dengan \(t_p\) adalah waktu yang diperlukan bola untuk mencapai puncak. Maka waktu bola di udaranya adalah dua kali waktu bola mencapai puncak (waktu bola di udara = waktu bola naik dan turun), yaitu \(t_{udara} = 2 t_p = \frac{2v_0 \sin \alpha}{g}\) Untuk ketinggian maksimum (ketinggian puncak), kita perlu mencermati bahwa kecepatan vertikal saat puncak adalah nol, sehingga $$v_{ty}^2=v_{0y}^2 - 2 g y_{max}$$ $$0=v_{0y}^2 - 2 g y...
Recent posts

Trik Rumus Cepat Gerak Parabola Pada Soal Fisika SBMPTN

Sering kali dijumpai kasus gerak parabola pada soal tes Fisika SBMPTN. Dan, soal-soal tersebut biasanya memerlukaan penalaran lebih lanjut, dan tidak bisa menggunakan rumus langsung biasa, seperti \(x=\frac{v_0^2 \sin 2\alpha}{g}\) dan \(y=\frac{v_0^2 \sin^2\alpha}{2g}\) Dari kedua rumus tersebut, dapat dikembangkan rumus-rumus selanjutnya, seperti Perbandingan jarak horizontal x maksimum  dengan perbandingan jarak horizontal y maksimum $$\frac{x}{y}  = \frac{\frac{v_0^2 \sin 2\alpha}{g}}{\frac{v_0^2 \sin^2\alpha}{2g}} = \frac{\sin 2\alpha}{\frac{1}{2}\sin^2 \alpha} \\ = \frac{2 \sin 2\alpha}{\sin^2\alpha} \\ = \frac{4 \sin \alpha \cos \alpha}{sin^2\alpha} \\ = \frac{4 \cos \alpha}{\sin \alpha}$$ $$\frac{x}{y}  = \frac{4}{\tan \alpha}$$ Hasil yang didapat logis, karena jarak yang ditempuh secara horizontal jauh lebih besar dari jarak vertikal (karena gerak horizontal merupakan GLB, sedangkan gerak vertikal merupakan GLBB diperlambat gravitasi). Sebagai pe...

Dinamika (Katrol dan Bidang Miring)

Soal dinamika khususnya katrol dan bidang miring adalah soal yang cukup mudah dikerjakan. Namun, biasanya memakan waktu lumayan bagi yang belum terbiasa dengan hukum Newton. CermatSBMPTN kali ini akan memberikan rumus-rumus jadi (trik cepat) untuk dinamika katrol dan bidang miring. Trik Cepat $$a = g (\sin \theta - \mu_k \cos \theta)$$ Jika bidang licin, maka \(a = g \sin \theta\) $$a = g \frac{m_2 - m_1}{m_1+m_2}$$ Dengan \(m_2 > m_1\) $$a = g \frac{m_2 - \mu_k m_1}{m_1+m_2}$$ Dengan \(m_2 > m_1\) Jika bidang licin, maka \(a = g \frac{m_2}{m_1+m_2}\) Demikian cara mencari percepatan benda pada kasus dinamika yang sering dijumpai. Namun, patut kita tahu bahwa pemahaman Hukum Newton sangat berguna untuk pengerjaan soal-soal dinamika. Semoga bermanfaat.

Persamaan Trigonometri Dengan Bentuk a cos x + b sin x dan lainnya

Persamaan trigonometri sering dijumpai di bagian Matematika IPA SBMPTN. Terkadang, soal tidak hanya menanyakan solusi dari sebuah persamaan, tapi juga dapat menanyakan maksimum dan minimum dari suatu fungsi trigonometri \(a cos x+ b sin x\) Persamaan trigonometri \(a cos x + b sin x\) dapat diubah ke bentuk sederhana \(R cos (x- \alpha)\) dengan $$R=\sqrt{a^2+b^2}\\ \alpha= arc tan (\frac{b}{a})$$ Pembahasan Misalkan segitiga siku-siku dengan rusuk tegak b, rusuk bawah a, dan hipotenusa R Dari rumus Phytagoras kita tahu bahwa $$a^2+b^2=R^2$$ Dan, dari gambar kita tahu bahwa $$a = R\ \cos \alpha$$ dan $$b = R\ \sin \alpha$$ Maka dapat kita tulis $$a\ \cos x + b\ \sin x = (R\ \cos \alpha) \cos x + (R\ \sin \alpha) sin x \\=R\ \cos (x-\alpha)$$ (Ingat bahwa \(\cos (x-\alpha) = \cos x \cos \alpha + \sin x \sin \alpha\)) Untuk operasi pengurangan, atau a dan b nya dipindah, dapat dicari dengan cara yang sama. Contoh Soal 1. Cari solusi d...

Fluida Statis Kasus Benda Tercelup Dalam Keadaan Terapun

Kasus benda tercelup dalam suatu cairan adalah hal yang benar-benar sering dijumpai pada soal fisika SBMPTN. Dan, soal ini bisa dibilang merupakan soal yang paling mudah , karena hanya butuh sekitar 4 detik untuk menjawab soalnya dengan tepat. Apapun yang ditanyakan, entah itu massa jenis cairan, massa jenis benda, volume bagian tercelup/tidak tercelup, semuanya mudah asal mengetahui trik cepat ala CermatSBMPTN! Masih ragu? Ayo simak pembahasan trik cepat dari kami! Pembahasan Kita tahu bahwa bila benda terapung dalam cairan, gaya Archimedes (gaya ke atas) yang dialami benda besarnya sama dengan gaya berat benda.   Bila kita lambangkan gaya Archimedes (\(F_a\)), gaya berat (\(W\)), massa jenis cairan (\(\rho_c\)), massa jenis benda (\(rho_b\)), maka $$F_a = W\\ \rho_c * g * V_{benda tercelup} = \rho_b * g * V_{benda total}\\ \frac{\rho_b}{rho_c} = \frac{V_{benda tercelup}}{V_{benda total}}$$ Karena \(\frac{V_{benda tercelup}}{V_{benda total}}\) merupakan ...

Pertidaksamaan Mutlak

Pertidaksamaan mutlak memang merupakan soal yang cukup menyita waktu pada Tes SBMPTN. Bagi yang tidak tahu cara cepat mengerjakan soal pertidaksamaan mutlak, maka pasti akan kesulitan dalam mengejar waktu. Untungnya, CermatSBMPTN™ punya trik cepat untuk menyelesaikan soal ini. Contoh Soal 1. Tentukan batas nilai x yang memenuhi pertidaksamaan \(|3x+1| < |2x-2|\) ! Jawaban: Kita lakukan penambahan dan pengurangan seperti di bawah ini $$3x + 1 + 2x-2 = 5x - 1 $$ $$3x + 1 - (2x-2) = x +3 $$ Lalu, bentuk pertidaksamaan mutlak dapat disederhanakan menjadi $$(5x-1)(x+3) < 0$$ Sehingga $$-3 < x < \frac{1}{5}$$ Mudah sekali, bukan? Tidak perlu kuadrat-kuadratan, hanya dengan menambahkan, mengurangkan, lalu mengalikan hasilnya < 0 (karena di soal tandanya <, kalau di soal pakainya >,  ya jadinya > 0) Soal semacam ini dapat diselesaikan dalam hitungan detik jika tahu trik cepat ini. Trik Cepat Untuk...

Barisan dan Deret Aritmatika dengan Tingkat Dua atau Lebih

Sering dijumpai soal barisan aritmatika bertingkat pada tes SBMPTN, sehinggga kali ini CermatSBMPTN!™ akan mengupas tuntas materi ini. Telah kita ketahui bahwa barisan aritmatika biasa (derajat satu, atau punya nilai beda yang tetap) dapat dirumuskan suku ke-n nya sebagai berikut. $$U_n = a + (n-1) b$$ Barisan aritmatika tersebut dinamakan barisan orde satu , karena rumus suku ke-n nya berupa polinomial derajat satu . Lantas, bagaimana rumus suku ke-n jika barisan punya nilai beda yang berubah linear atau bertingkat/orde dua? Mudah saja , asal mengerti konsep barisan yang dijelaskan pada artikel ini. Misalkan, barisan $$U = 2, 6, 12, 20, 30$$ Dari suku ke-1 ke suku ke-2 punya nilai beda sebesar 6 - 2 = 4 Dari suku ke-2 ke suku ke-3 punya nilai beda sebesar 12 - 6 = 6 Dari suku ke-3 ke suku ke-4 punya nilai beda sebesar 20 - 12 = 8 Kita lihat bahwa nilai beda tingkat pertama nya berubah-ubah (dari 4 jadi 6 lalu 8). Namun, perubahan nilai bedanya konstan, yaitu 2. ...